Bias-correction for Weibull common shape estimation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bias in Shape Estimation

This paper analyses the uncertainty in the estimation of shape from motion and stereo. It is shown that there are computational limitations of a statistical nature that previously have not been recognized. Because there is noise in all the input parameters, we cannot avoid bias. The analysis rests on a new constraint which relates image lines and rotation to shape. Because the human visual syst...

متن کامل

Parameters Estimation and Bias Correction

This paper considers parameter estimation for continuous-time diffusion processes which are commonly used to model dynamics of financial securities including interest rates. To understand why the drift parameters are more difficult to estimate than the diffusion parameter as observed in many empirical studies, we develop expansions for the bias and variance of parameter estimators for two mostl...

متن کامل

Template Shape Estimation: Correcting an Asymptotic Bias

We use tools from geometric statistics to analyze the usual estimation procedure of a template shape. This applies to shapes from landmarks, curves, surfaces, images etc. We demonstrate the asymptotic bias of the template shape estimation using the stratified geometry of the shape space. We give a Taylor expansion of the bias with respect to a parameter σ describing the measurement error on the...

متن کامل

Bias Correction in Saupe Tensor Estimation

Estimation of the Saupe tensor is central to the determination of molecular structures from residual dipolar couplings (RDC) or chemical shift anisotropies. Assuming a given template structure, the singular value decomposition (SVD) method proposed in [15] has been used traditionally to estimate the Saupe tensor. Despite its simplicity, whenever the template structure has large structural noise...

متن کامل

Learning a Bias Correction for Lidar-only Motion Estimation

This paper presents a novel technique to correct for bias in a classical estimator using a learning approach. We apply a learned bias correction to a lidar-only motion estimation pipeline. Our technique trains a Gaussian process (GP) regression model using data with ground truth. The inputs to the model are high-level features derived from the geometry of the point-clouds, and the outputs are t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Computation and Simulation

سال: 2014

ISSN: 0094-9655,1563-5163

DOI: 10.1080/00949655.2014.949714